National Taiwan University | College of Life Science
Associate Professor
Assistant Professor
>Home >FACULTY>Tze-Bin Chou, Professor
Tze-Bin Chou, Professor

Born in 1957

Ph. D. New York State University, U.S.A.
Specialty Genetics, Developmental genetics in drosophila, Molecular genetics

E-mail : tbchou

Laboratory: Life Science Building R709

TEL 886-2- 33662480

Recent Research Topics
  • The posterior localization of oskar mRNP

Laboratory: Developmental Genetics Laboratory

The anchorage mechanism for oskar mRNP

oskar mRN localization determines the formation of Drosophila pole cells and abdomen in the embryo. From previous project, we confirmed that the three components of Processing body (P-body), dDcp1, dDcp2 and dGe-1, are required for the proper oskar mRNA localization. This project is to further clarify how P-body components can work together with Dmoesin and regulate the anchorage of oskar mRNA.

Drosophila decapping protein 1, dDcp1, is a component of oskar mRNP complex and directs its proper posterior localization in the oocyte (Developmental Cell 10, 601–613 (2006)). However, the biological significance for the presence of dDcp1 in the oskar mRNP complex is not clear. Based on the mutations of two other P-body components, dDcp2 and Ge-1, we confirmed that both, again, affect oskar mRNP localization. Combining the localization of both dDcp2 and dGe-1along the cortical region and the intimate layer pattern at the posterior end in the oocyte, the formation of dDcp1-dGe-1-dDcp2 complex i n vitro and in vivo , and other genetic, cellular and biochemical evidences, we propose that dDcp2-dGe-1 complex stands by along the cortical region waiting for the arrival of dDcp1- oskar RNP. After dDcp2-dGe-1-dDcp1complex formation, oskar mRNP is localized at the posterior end in the oocyte.

Dmoesin is a membrane cytoskeletal cross-linker. Based on the physical interactions between dDcp2-F-actin and dDcp2-Dmoesin, we depict the scenario that F-actin-dDcp2-dGe-1 supports the location of dDcp1-o skar mRNP and the profound dDcp2-Dmoesin bonding anchors the oskar mRNP-dDcp1-dGe-1-dDcp2 complex deep in the posterior membrane of oocyte.

How Dmoesin regulates the anchorage of oskar mRNP through its interaction with P-body components is the aim of our future study. We expect to explore a new developmental function for P-body components and define the anchorage mechanism for oskar mRNP.


Selected Research Publications

Wei-Ling Chang, Che-Wei Chang, Yu-Yun Chang, Hsin-Ho Sung, Ming-Der Lin, Shu-Chuan Chang, Chung-Hao Chen, Chia-Wei Huang, Kuei-Shu Tung and Tze-Bin Chou* (2013) The Drosophila GOLPH3 homolog regulates the biosynthesis of heparan sulfate proteoglycans by modulating the retrograde trafficking of exostosins. Development 140, 2798-2807 doi:10.1242/dev.087171.

M.V. Zabolotskaya, D.P. Grima, C. Roberts, M.D. Lin, T.B. Chou, and S.F. Newbury. (2008) The 5-3'exoribonuclease Pacman is required for normal male fertility and is dynamically localised in cytoplasmic particles in  Drosophila  testis cells.  Biomedical J. 416(3):327-35.

Ming-Der Lin,  Xinfu Jiao  , Dominic Grima, Megerditch Kiledjian, Sarah F. Newbury and Tze-Bin Chou * (2008)  Drosophila Processing body in oogenesis.  Developmental Biology  322 (2) 276-288.

Ming-Der, Lin, Shih-Rong, Fan, Wei-Shan Hsu and Tze-Bin Chou* (2006)  Drosophila  decapping protein 1, dDcp1, is a component of the  oskar  mRNP complex and directs its posterior localization in the oocyte.  Developmental Cell  , 10: 601-613.

Chiang, J.M., Y.H.W. Chou and T.B. Chou*. 1998. K-Ras condon 12 mutation determining the polypoid growth of colorectal cancer.  Cancer Res.   58: 3289-3293.

Chou,T.B. and N. Perrimon. 1996. The autosomal FLP-DFS technique for generating germline mosaics in  Drosophila melanogaster  . Genetics 144:1673-1679.

Chou, T.B.*, X.S. Hou*, M.S. Melnick and N. Perrimon. 1995. The Torso receptor tyrosine kinase can activate Raf in a Ras-independent pathway. Cell:81:63-71. (*The first two authors contribute equally)

Zachar, Z., T.B. Chou, I. Kramer, I.P. Mims and P.M. Bingham. 1994. Analysis of autoregulation at the level of pre-mRNA splicing of the suppressor-of-white-apricot gene in Drosophila. Genetics 137:139-150.

Chou, T.B., E. Noll and N. Perrimon. 1993. Autosomal ovoD1 dominant female sterile insertions in  Drosophila  and their use in generating germline chimera. Development 119(4):1359-1369.

Ruohola-Baker, H., E. Grell, T.B. Chou, D. Baker, L.Y. Jan and Y.N. Jan. 1993. Spatially localized rhomboid is required for establishment of the dorsal-ventral axis in  Drosophila  oogenesis. Cell 73:953-965.

Lu, X., T.B. Chou, N.G. Williams, T. Roberts and N. Perrimon. 1993. Control of cell fate determination by p21ras/Ras1 activity, an essential component of torso signaling in  Drosophila  . Genes Dev. 7:621-632.

Siegfried, E., T.B. Chou and Perrimon. 1992. Wingless signaling acts through zeste-white 3, the  Drosophila  homolog of glycogen synthetase kinase-3, to regulate engrailed and establish cell fate. Cell 71:1167-1179.

Chou, T.B. and N. Perrimon. 1992. Use of a yeast site-specific recombinase to produce female germline chimeras in  Drosophila . Genetics 131:643-653.

Courses Information

205 32300 Genetics
205 32400 Genetics Lab.
205 36700 Molecular Cell Biology
225 U3040

Gene and Development

225 M0360 Special Topics in Gene and Development
Copyright © 2004 Institute of Molecular and Cellular Biology, National Taiwan University

Last Updated: